Pain Symptom Manage. Author manuscript; available in PMC 2011 April 29. Published in final edited form as: J Pain Symptom Manage. 2010 January; 39(1): 126–138. doi:10.1016/j.jpainsymman.2009.05.022. # Mind-Body Treatments for the Pain-Fatigue-Sleep Disturbance Symptom Cluster in Persons with Cancer Kristine L. Kwekkeboom, PhD, RN, Catherine H. Cherwin, MS, RN, Jun W. Lee, MS, RN, and Britt Wanta, MS, RN University of Wisconsin-Madison, School of Nursing ### Abstract **Purpose**—To synthesize evidence regarding mind-body interventions that have shown efficacy in treating two or more symptoms in the pain-fatigue-sleep disturbance cancer symptom cluster. **Design**—A literature search was conducted using CINAHL, Medline, and PsychInfo databases through March 2009. **Methods**—Studies were categorized based on the type of mind-body intervention (relaxation, imagery / hypnosis, cognitive-behavioral therapy / coping skills training [CBT/CST], meditation, music, and virtual reality), and a preliminary review was conducted with respect to efficacy for pain, fatigue, and sleep disturbance. Mind-body interventions were selected for review if there was evidence of efficacy for at least two of the three symptoms. Forty-three studies, addressing five types of mind-body interventions met criteria and are summarized in this review. **Findings**—Imagery / hypnosis and CBT / CST interventions have produced improvement in all three cancer-related symptoms individually: pain, fatigue, and sleep disturbance. Relaxation has resulted in improvements in pain and sleep disturbance. Meditation interventions have demonstrated beneficial effects on fatigue and sleep disturbance. Music interventions have demonstrated efficacy for pain and fatigue. No trials were found that tested the mind-body interventions specifically for the pain-fatigue-sleep disturbance symptom cluster. **Conclusions**—Efficacy studies are needed to test the impact of relaxation, imagery / hypnosis, CBT / CST, meditation and music interventions in persons with cancer experiencing concurrent pain, fatigue, and sleep disturbance. These mind-body interventions could help patients manage all symptoms in the cluster with a single treatment strategy. ## Keywords Pain; Fatigue; Sleep Disturbance; Cancer; Mind-body and Relaxation Techniques Persons with cancer experience a range of symptoms related to both the disease and its treatment. Recent evidence has demonstrated that certain symptoms tend to co-occur or "cluster" together, exacerbating the overall symptom experience (1–2). In some cases, there may be shared mechanisms causing each of the symptoms to occur (e.g., cytokine induced nausea and vomiting). In other cases, having one symptom may cause or exacerbate another (e.g., uncontrolled pain may interrupt one's sleep). Finally, treatment strategies used for a particular symptom may produce side effects that manifest as new symptoms (e.g., using opioids to control pain may leave one feeling fatigued). Most studies have focused on identifying treatments for individual symptoms, but given new awareness of symptom clusters, it now appears that this piecemeal approach may be flawed. Treatment approaches may have greater effects if they target a cluster of symptoms rather than one single symptom. This paper will review evidence for mind-body interventions to identify those that may be efficacious in treating the symptom cluster of co-occurring pain, fatigue and sleep disturbance in cancer. ## **Background** The focus of cancer symptom management research has recently shifted as investigators acknowledge that symptoms typically do not occur in isolation. Symptom clusters are defined as combinations of two or more co-occurring symptoms that are related to each other and that are independent of other symptoms or symptom clusters (3–4). Symptoms within the cluster may share the same etiology, but are not required to do so. Some of the symptoms may be related to the cancer itself, while others are brought about by cancer treatment strategies. When occurring together, the symptoms may have a greater impact on physical function, emotional distress and overall quality of life than was previously attributed to symptoms occurring in isolation. Barsevick (5) used the term "crossover" in suggesting that treatments shown to benefit a single symptom may have a broad spectrum of effect and could also impact other symptoms in the cluster. Williams (6) hypothesized that a single intervention may impact the entire symptom cluster, noting that: 1) the symptoms may share a common etiology, 2) diminishing one symptom may prevent exacerbations in others, and 3) single interventions may be indicated for more than one symptom. She also noted possible benefits of using a single intervention in that it simplifies treatment, reduces the risk for side effects, and may reduce costs. In this paper, the term "crossover" is used to describe treatments that have demonstrated efficacy for more than one of the cluster component symptoms and may therefore be beneficial in treating the symptom cluster as a whole. It is our position that such crossover treatments should be given priority in symptom cluster management trials. The most well-documented and studied symptom cluster is the combination of pain, fatigue, and sleep disturbance. Pain, fatigue, and sleep disturbance are among the most common symptoms experienced by persons with cancer (7). Pain is reported by 59% of persons receiving anticancer treatment and 64% of those with advanced, metastatic or terminal disease (8). Fatigue, the most common symptom experienced by all persons with cancer, impacts more than 75% of patients (9–11). Sleep problems, such as difficulty falling asleep, frequent nighttime wakening, waking too early in the morning, or excessive daytime sleeping, are reported by up to 72% of persons with cancer (12–13). These three symptoms have been found to cluster, co-occurring in more than 40% of patients, particularly those receiving cancer treatment (14–17). Moderate positive correlations between the three symptoms have been documented in persons with various cancer diagnoses and stages of disease (14). If not adequately managed, the symptoms in this cluster may interfere with mood, role and social functions, ability to tolerate and continue cancer therapies, and overall quality of life (18–23). Traditional medical management of pain, fatigue, or sleep disturbance has focused on the use of pharmaceutical treatments such as analgesics, psychostimulants, hematopoietic growth factors, or sedatives. Specific medications prescribed for one symptom, however, may unintentionally worsen the other symptoms. For example, opioid pain medications may cause feelings of tiredness and increase daytime napping, which, in turn, leads to less restful nighttime sleep. Disruptions in sleep may exacerbate daytime fatigue, causing increased sensitivity to pain. Sleep disturbance related to steroid use may result in inadequate rest and intensify fatigue. On the other hand, use of sedatives or sleep enhancers may result in sensations of grogginess or lack of alertness throughout the day, which could intensify fatigue and contribute to muscle aches and pain. It appears that the pain-fatigue-sleep disturbance symptom cluster cannot be optimally managed with the use of medications alone. Nonpharmacologic, mind-body interventions may provide a beneficial addition to the treatment regimen. Mind-body interventions are techniques that "focus on the interactions among the brain, mind, body, and behavior, and on the...ways in which emotional, mental, social, spiritual, and behavioral factors can directly affect health" (24). Examples of mind-body interventions include relaxation, hypnosis, imagery, meditation, and cognitive or behavioral techniques, among others. The goal of mind-body interventions is to provide patients with the knowledge and skills to cope with and achieve personal control over their symptoms. Mind-body interventions are particularly appealing options to explore for the treatment of cancer symptom clusters as they are inexpensive, can be used in addition to pharmacologic strategies, have relatively few negative side effects, and can be implemented by patients independently with sufficient training. Pain, fatigue, and sleep disturbance share a psychological component. Factors such as anxiety and meaning of the cancer symptoms may intensify how the symptoms are perceived and experienced (25). The Theory of Unpleasant Symptoms suggests that psychosocial factors such as mental state, reaction to illness, and anxiety are antecedents to symptoms that help define the overall symptom experience (26–27). Depression is often noted as being related to pain, fatigue, and sleep disturbance in cancer, and some investigators have included depression as a component of the symptom cluster itself (17). Interventions to enhance coping, diminish stress and anxiety, and improve mood may therefore help to improve the pain-fatigue-sleep disturbance symptom cluster (28). Mindbody interventions may be useful in altering negative thoughts about cancer, the underlying cause of symptoms, or in reframing how the symptoms are interpreted. The interventions may improve mood and provide a more optimistic attitude toward one's ability to cope with pain, fatigue, and sleep disturbance. Mind-body interventions may also enhance relaxation and reduce stress and anxiety related to the symptom experience. The physical and mental effects of relaxation may reduce sensitivity to pain sensations, allow more restful sleep, and reduce fatigue. The purpose of this literature review is to identify mind-body interventions for which evidence suggests beneficial effects on at least two of the three cluster component symptoms (pain, fatigue, and sleep disturbance), and to synthesize that evidence. These interventions may hold potential for use as treatment for the full symptom cluster. #### Method
CINAHL, Medline, and PsycINFO databases were searched through March 2009 using selected terms for mind-body interventions (*guided imagery, hypnosis, relaxation, biofeedback, cognitive-behavioral therapy, coping skills training, meditation, virtual reality,* and *music*) combined with the term *cancer* and terms for any of the three symptoms of interest (*pain, fatigue, sleep disturbance, sleep difficulty, insomnia*). We restricted our search to those mind-body interventions that involve primarily mental activity, as they can be performed by nearly all patients, including those with advanced disease. Although yoga is classified as a mind-body intervention by the National Center for Complementary and Alternative Medicine (24), there is disagreement in the literature with some investigators describing the intervention as physical exercise involving "vigorous...aerobic activity" (pg. 127) (29). Thus, we did not include "yoga" in our search. Results were limited to English language, research, and adults (age ≥ 18). Abstracts were reviewed and articles were selected for inclusion if they tested one of the mind-body interventions in a sample of patients with cancer and if pain, fatigue, or sleep disturbance was among the dependent variables. We eliminated studies in which patients were undergoing diagnostic testing for cancer (i.e., a cancer diagnosis had not yet been established), as well as studies that included both persons with and without cancer in their samples. Next we placed studies into one of six categories by intervention type: 1) Relaxation, 2) Imagery / Hypnosis, 3) Cognitive-behavioral therapy / Coping skills training [CBT/CST], 4) Meditation, 5) Music, 6) Virtual Reality. We categorized studies based on the description of the intervention provided in the research report. If the study included more than one intervention, it was categorized based on the most complex intervention included in the study. For example, if a CBT intervention was compared to a simple relaxation intervention, the study was categorized as a test of the more complex intervention, CBT. Descriptions of each type of intervention are provided in *Results*. We conducted a preliminary review and identified those mind-body interventions for which beneficial effects were demonstrated on at least two of the three symptoms. Studies of those interventions were then reviewed in detail using a systematic narrative approach. We did not compute study quality scores, as our intent was to cast a broad net for those mind-body interventions that currently hold promise as treatment for the symptom cluster. Those interventions can then be targeted for immediate study. #### Results #### **Evidence for Crossover Mind-Body Interventions** A total of 47 published articles were identified that tested a mind-body strategy for pain, fatigue, and / or sleep disturbance in persons with cancer. Of the six types of mind-body interventions searched, all but virtual reality had studies supporting beneficial effects on at least two of the three symptoms of interest (Figure 1). The four studies that tested a virtual reality intervention provided evidence for effects on fatigue only, and are not addressed in this review. The 43 studies of 1) relaxation 2) imagery / hypnosis, 3) CBT / CST, 4) meditation, and 5) music are described and their findings synthesized in the following pages. #### Relaxation Studies were categorized as "Relaxation" if they tested a technique designed to elicit a state of relative freedom from mental and / or physical tension (30). The use of relaxation as a therapeutic intervention dates back many decades. In the early 1900s, Jacobsen developed the progressive muscle relaxation (PMR) technique to stimulate physical and mental relaxation by focusing attention on the sensations associated with systematically tensing and relaxing groups of muscles (31). A variety of other relaxation exercises have been developed such as jaw relaxation (relaxing muscles of the face, mouth, and jaw), focused breathing (focusing attention on a relaxing word or phrase and slow, regular respirations) or abdominal breathing (slow deep breathing using muscles of the abdomen). Relaxation exercises minimize sympathetic nervous system response, which decreases oxygen demand, slows heart rate and respirations, and lowers blood pressure (32). Relaxation interventions may improve symptoms by eliminating physical tension and emotional stressors, and by facilitating the ability to become comfortable, rest, and fall asleep (25). Relaxation interventions were implemented as the experimental treatment in six studies (Table 1). Pain was the most frequently studied outcome. It was the primary focus of four efficacy trials, with beneficial effects demonstrated in three. Samples included hospitalized patients with cancer pain, and outpatients with chronic cancer pain, and women with early stage breast cancer. Significantly greater pain relief was obtained with PMR when compared to massage, treatment-as-usual (33), positive mood manipulation, distraction, and a no treatment control condition (34). Biofeedback-assisted relaxation resulted in greater pain relief when compared to attention control (e.g., time spent with a nurse) (35). Domar, Noe & Benson (36), however, found no significant differences in pain between a daily relaxation exercise and a distraction condition among patients having surgical skin cancer resection. One study each explored the effect of relaxation training on fatigue and sleep disturbance. Training in PMR did not improve fatigue in patients receiving radiotherapy when compared to an informational intervention (37), but PMR training did improve sleep in patients with insomnia when compared to treatment-as-usual (38). Two additional studies used relaxation interventions as comparison conditions in studies of imagery interventions. Both compared PMR to standard care in hospitalized patients. One demonstrated a significant reduction in pain with PMR (39), but the other found no differences in pain or fatigue (40). ## Imagery / Hypnosis Studies were categorized as "Imagery / Hypnosis" if they tested an intervention that asked participants to create specific mental images with the intent of bringing about positive physical or emotional effects (41). Despite their different names, imagery and hypnosis have been noted to be quite similar in terms of practice. Both interventions focus on the creation of mental representations, through recall of memories or creative imagination, that change the desired outcome (e.g., symptom experience) (42). Pleasant images may be created to distract attention away from the noxious symptom. Alternatively, images of the unpleasant symptom may be modified to change the symptom experience (43). Investigators have suggested that the body mimics neurohormonal responses to the mental images, as if they were actually occurring (41, 44). The mental images may also alter expectations for outcome, such that the desired outcome occurs automatically in response to the new image (44). Imagery / hypnosis interventions served as the experimental intervention in six studies (Table 2). Four studies tested imagery interventions in hospitalized patients with cancer pain, and all reported beneficial effects; one in a pretest-posttest design (45) and three when compared to treatment-as-usual or attention control conditions (39,46–47). Conversely, Hasse et al. (40) found no significant differences in pain and no differences in fatigue between patients receiving an imagery intervention and those receiving standard care with colorectal surgery. Elkins (48) tested a hypnosis intervention among women with breast cancer who were experiencing hot flashes and reported a significant improvement in sleep scores in the hypnosis group compared to a no treatment control condition. Four additional studies used imagery interventions as comparison conditions in studies of CBT / CST. All combined imagery with relaxation instructions. One study reported no change in pain or fatigue (49), but two reported significant reductions in pain (50–51) and one reported significant reductions in fatigue and sleep disturbance (52). #### **CBT / CST** Studies were categorized as "CBT / CST" if the intervention aimed to change patients' thoughts as a way to influence their feelings and behaviors, helping patients to recognize and subsequently control their response to symptoms using a programmed education or counseling approach. Interventions that combined training in more than two cognitive or behavioral coping strategies in a single treatment group were also included in this category as coping skills training. What an individual thinks and believes about his / her symptoms, including thoughts about the symptom's meaning, controllability, and consequences influence how symptoms are experienced. In CBT / CST interventions, participants are taught to understand how their thoughts influence their feelings and behavior, to recognize and acknowledge when this is occurring, and to use cognitive strategies and coping skills to change their thoughts and behaviors. The interventions are usually delivered over several weeks and involve assignments to practice what has been learned outside of the training sessions. If the patient experiences difficulty with the skills, problem-solving and additional training are carried out at the next treatment session. As applied to symptom management, CBT / CST interventions focus on helping participants to identify and change maladaptive cognitions about their symptoms and use various cognitive and behavioral coping strategies that change how the symptoms are perceived and experienced (53). A total of twenty-one studies (24 publications) tested a program of CBT / CST in persons with cancer-related pain, fatigue, or sleep disturbance (Table 3). Four studies tested CBT / CST interventions for pain. Robb, Williams, Duvivier, & Newham (54) demonstrated a
significant reduction in pain intensity among adults with chronic cancer pain after participating in a 6-month pain-focused CBT intervention. Syrjala and colleagues (50–51) conducted two trials of a CBT intervention, comparing the treatment to treatment-as-usual for mucositis pain experienced by persons having a bone marrow transplant to treat hematologic malignancies. In the first study, pain reported by the CBT group was no different from pain reported by the control group. In the second study, CBT resulted in significantly less pain than the control condition (51). Dalton (55) tested a similar self-care program among adults with cancer-related pain, but found no differences in pain ratings when compared to control. Cancer-related fatigue was the primary focus of three studies of CBT / CST interventions; all demonstrated beneficial effects. Samples included patients receiving chemotherapy, patients who had completed treatment, and patients with malignant melanoma. Significantly greater improvements in fatigue were achieved with a 6–12 week CBT / CST intervention when compared to treatment-as-usual (56), waitlist control (57–58) and a no treatment control condition (59). Three studies tested the effects of CST in managing the combination of pain and fatigue. Samples included women with metastatic breast cancer experiencing pain (49), patients undergoing curative radiation therapy (60), and women undergoing bone marrow transplant for breast cancer (61). All studies compared a one-session CST intervention to a treatment-as-usual control condition. No significant differences in pain or fatigue were noted between groups in any of these studies. Seven studies evaluated the effects of CBT / CST interventions on the combination of fatigue and sleep disturbance. Six of these studies involved samples of women with breast cancer (52,62–66,68–69) and one study included patients with a variety of cancer diagnoses (67). Williams and Scheier (62) found decreased incidence of fatigue and sleep disturbance using a 20-minute coping skills audio-recording before each chemotherapy cycle compared to treatment-as-usual. In one group designs, both Quesnel (64) and Berger (68–69) reported significant improvement in sleep with a 4–8 week CBT intervention, but only Quesnel also reported improvement in fatigue. Epsie (67) found greater improvements in sleep and less fatigue after a 5-session nurse-led CBT intervention compared to treatment-as-usual. Savard et al. and Epstein and Dirksen reported greater improvement in sleep, but no change in fatigue when 4–8 weeks of CBT was compared to treatment-as-usual (63) or sleep education (65–66). And Cohen and Fried (52) reported no improvement in either fatigue or sleep disturbance with a 9-week CBT intervention compared to standard treatment. Finally, four studies measured the effect of CBT / CST interventions on all three symptoms concurrently: pain, fatigue, and sleep disturbance. One study documented improvement in two of the three symptoms. Davidson, Waisberg, Brundage, & Maclean, (70) tested an 8-week sleep focused CBT program in persons with cancer-related insomnia using a one-group pretest posttest design. Significant improvements were documented in both fatigue and sleep disturbance, but pain remained unchanged. Arving et al. (71) and Dalton, Keefe, Carlson & Youngblood (72) both tested individually-tailored CBT interventions. Arving reported significantly less sleep disturbance but no differences in pain or fatigue among women starting treatment for breast cancer following a nurse-led CBT intervention compared to control. Dalton et al. (72) reported significantly lower ratings of "worst" pain immediately after the tailored CBT program, and greater reductions in pain and fatigue 6-months after the intervention compared to treatment-as-usual control. There were no differences in sleep. Vilela et al. (73) found no significant differences in pain, fatigue, or sleep disturbance in patients with head and neck cancer using a CST intervention compared to control. #### Meditation Studies were categorized as "Meditation" if they provided training in a self-directed mental exercise to intentionally and continually focus the mind on a single target perception. Meditative techniques grew largely out of Eastern religious practices such as Hindu, Buddhist, and Taoist meditation (74). Mindfulness-based stress reduction (MBSR), a meditative technique that has grown in popularity over the last decade, involves awareness of body sensations and focused breathing to calm the mind and give the individual a sense of non-judgmental awareness of bodily experiences (75). Some MBSR techniques include training in meditative exercises such as gentle yoga poses to help bring about the meditative state (76). Symptoms such as pain, fatigue, and sleep disturbance may be modified through meditation by focusing attention away from the symptom experience, by focusing on strengths and positive thoughts, by eliminating the evaluation or judgment of sensations associated with the symptom (77–79). Although no studies tested the effects of meditation on cancer-related pain, four studies evaluated the impact of meditation interventions on fatigue and / or sleep disturbance (Table 4). Three studies specifically identified the type of meditation as MBSR; one used similar techniques, but simply described the intervention as meditation. Only one study reported beneficial effects, and that study used a one group pretest-posttest design. Carlson and Garland (77) reported a significant improvement in both fatigue and sleep disturbance among outpatients with cancer who participated in an 8-week MBSR intervention. Kieviet-Stijnen et al. (80) studied and 8-week MBSR intervention in patients with various cancer diagnoses and found no within group improvement in fatigue. Moadel et al. (81) studied a 12-week meditation intervention in a sample of women with breast cancer and found no significant differences in fatigue when compared to a wait list control condition. Similarly, Shapiro et al. (82) tested a 6-week MBSR intervention among women with breast cancer and found no differences in sleep disturbance when compared to a choice of other self-directed stress management techniques. #### Music Studies were categorized as tests of "Music" interventions if they promoted health and well-being through listening to or participating in music in some way (83). Music therapists sometimes involve persons in exploring thoughts and beliefs through music or expressing emotions by creating music, singing or dancing, but simple music listening can also be an efficacious strategy in managing symptoms. Music can stimulate both physiologic and emotional reactions based on its pitch, intensity, tone, and rhythms (84). Certain styles of music may trigger relaxation while others enhance mood, and still others energize the mind and body. In general, music provides a source of distraction by holding one's attention on the specific musical qualities. Particularly engaging music may distract attention from pain, relaxing music may release muscle tension and reduce pain, or stimulate muscle relaxation to enhance sleep and rest (30,85). Fast paced, up tempo, positive music may energize and elevate the mood of someone who is feeling fatigued (86–87). Four studies evaluated the effects of music interventions on pain (Table 5). Cholburi et al. (88) and Zimmerman et al. (89) both reported significant pre- to post-treatment reductions in pain using 30-minutes of preferred music among hospitalized patients with cancer pain. Beck (90) and Kwekkeboom (91), however, found no differences in pain when music listening was compared to a control condition (white noise, book on tape, or resting quietly). Two studies tested a music intervention on cancer-related fatigue. Ferrer (92) compared live music to a no treatment control condition among cancer patients receiving chemotherapy and reported significantly less fatigue in the music group. Burns et al. (93) compared music with standard care in a sample of hospitalized patients receiving intensive chemotherapy and found no significant difference in fatigue between groups. ## **Discussion** A total of six mind-body interventions that had been studied for cancer-related pain, fatigue, or sleep disturbance were initially identified in this review; all interventions except virtual reality demonstrated beneficial effects on at least two of the symptoms and met criteria for review. Findings suggest there is at least some evidence to support the use of CBT / CST interventions and imagery / hypnosis interventions for all three symptoms. Relaxation has demonstrated efficacy in managing pain and sleep disturbance. Meditation has been supported in the treatment of both fatigue and sleep disturbance. And music has been efficacious in managing both pain and fatigue. This evidence suggests there is value in exploring these five mind-body interventions as potential crossover treatments for the pain-fatigue-sleep disturbance symptom cluster in persons with cancer. Of the fifteen studies that measured multiple symptom outcomes, only six indicated improvement in more than one symptom from the single intervention being tested. In each of those cases, the two symptoms improved were fatigue and sleep disturbance. Three of six studies used pretest-posttest, within group designs. These studies don't control for the possibility of improvement simply due to passage of time rather than effects of the mind-body intervention. None of the studies demonstrated concurrent improvement in pain and fatigue or pain and sleep disturbance, and none demonstrated improvement in all three symptoms. It is important to note, however, that none of these studies specifically targeted a symptom cluster as their focus of treatment. They simply measured other concurrent symptoms in addition to the primary symptom of interest. Most importantly, none of the studies used
inclusion criteria to select patients who were experiencing the pain-fatigue-sleep disturbance symptom cluster. Thus, baseline symptom status may not have been sufficient to demonstrate significant improvement across the symptom cluster. Relaxation interventions demonstrated efficacy in four of six trials in which relaxation was the primary intervention, and one of two trials that used relaxation as a comparison condition. The greatest evidence was for its effect on cancer-related pain. No studies supported effects on fatigue, but one study did suggest improvement in sleep disturbance. Both inpatients and outpatients were included in the studies as well as patients on and off therapy (surgery, chemotherapy, radiation). The most frequently studied intervention was PMR delivered over three or more training sessions, facilitated with an audio-tape and independent patient practice. Control conditions were most often described as treatment-asusual. When more active comparison conditions were used (i.e., education and counseling, distracting activity, imagery) effects of relaxation did not differ significantly from those of the comparison group. Imagery / hypnosis intervention demonstrated efficacy in five of six studies in which it was the primary treatment being tested, and three of four studies in which it was used as an active comparison condition. The majority of studies demonstrated support in relieving pain. Two studies documented improvement in sleep and one study documented improvement in fatigue with an imagery intervention. Most of these studies used randomized or crossover designs with treatment-as-usual control conditions. The imagery / hypnosis studies were conducted primarily with hospitalized patients experiencing cancer-related pain. Interventions ranged from a one-time 12 minute exercise to sessions of 50 minutes or more plus daily practice over several weeks. CBT / CST interventions were efficacious in fourteen of twenty-one studies. Studies demonstrated improvement in all three symptoms, but the most support was demonstrated for fatigue and sleep disturbance. Nearly half of the studies involved women with breast cancer either during or after completing treatment. All of the studies that used experience of the symptom(s) of interest as an inclusion criteria demonstrated improvement in that symptom. Again, treatment-as-usual was the most frequent control condition, although some used active comparison conditions. Two studies compared CBT / CST interventions to education and found greater effect of the CBT / CST intervention in comparison (65,72); however, three studies that used imagery interventions as a comparison found similar or stronger effects in the imagery group (50–52). Meditation interventions demonstrated efficacy in only one of the four studies, and those findings were within group differences in fatigue and sleep disturbance; a control or comparison condition was not included (77). Populations studied included only outpatients, most with early stage breast cancer and post-treatment. The relatively healthy samples may have precluded the ability to demonstrate improvement in symptoms. Both meditation studies that used control conditions failed to demonstrate significant effects of the mind-body intervention, regardless of whether the control was a wait list or an active comparison (patient-selected stress management techniques such as talking with a friend or exercising). Music interventions demonstrated greater effects than control or comparison conditions in three of the six studies. Evidence was strongest for effects on pain. One study documented beneficial effects on fatigue. No studies evaluated the effect of music on sleep disturbance. Patients studied were both in- and outpatients, with most experiencing the symptom of interest as inclusion criteria for the study. The length of music interventions were typically brief, 30–45 minutes delivered either as a one-time intervention or twice a day over 2–3 days. Four trials used randomized controlled designs with treatment-as-usual or "rest" as control conditions. Two used an active comparison condition involving a distraction technique or white noise, which did not differ from the effects of music. Few investigators used multi-symptom inventories in their studies, which could have provided useful leads in understanding the effects of mind-body interventions on co-occurring symptoms. Given that symptom cluster research is still a relatively new field, an ideal measure of the pain-fatigue-sleep disturbance symptom cluster has not yet been identified. Several scales used in the current studies appeared to have been sensitive to effects of the mind-body interventions. Those scales that most frequently detected changes in pain were the visual analog scale and the 0–10 numeric rating scale. Instruments that most frequently detected changes in fatigue included the visual analog scale, the fatigue and vigor subscales from the Profile of Mood States (94), and the Multidimensional Fatigue Inventory (95). Measures most frequently sensitive to the effects of mind-body interventions on sleep disturbance included sleep diaries, the Pittsburg Sleep Quality Index (96), sleep subscale of the European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire (97), and the Insomnia Severity Index (98). Additional research is necessary to identify the items and scales most useful in measuring symptom clusters. The optimal measure would be sensitive to clinically relevant changes in each symptom, but also brief and simple to complete given the symptom burden experienced by the cancer population. The studies we reviewed have several strengths. Nearly all were randomized controlled trials, offering the highest level of evidence for the interventions tested. The specific content of interventions was fairly consistent within each category. Although breast cancer was a common study population, a wide variety of patients were studied, including inpatients and outpatients, persons receiving treatment and those who had completed it, as well as persons with various diagnoses and stages of disease. Some of the studies required the presence of symptoms as an inclusion criterion, reducing the possibility of floor effects in these trials. The studies did, however, have some limitations. Sample sizes used in most trials were small to moderate (N < 100 in 35 of 43 trials). Specific doses (timing, frequency of practice) of CBT / CST interventions varied across studies. Relatively few studies tested meditation interventions. Most music interventions were fairly brief (1–6 sessions delivered over < 3 days) and few active comparison conditions were used in these studies. Several studies combined interventions and did not attempt to determine which intervention component actually produced the symptom improvement. Furthermore, most of the studies were efficacy trials, testing the mind-body interventions in a controlled, somewhat artificial context with a selected patient population. A few of the investigators described their studies as effectiveness trials, using clinic nurses (67) or social workers (61) to administer treatment in the clinical setting. As efficacy trials provide support for mind-body interventions in the context of treating a specific symptom cluster, effectiveness trials will need to be carried out to determine if the outcomes are reproducible in contemporary cancer care settings. Limitations of this review must also be noted. The authors identified criteria used to categorize the mind-body interventions and some readers may disagree with our decisions. We focused this review on mind-body interventions that involved primarily mental activities. Other CAM strategies not addressed in this review may offer equally or more beneficial effects in treating the pain-fatigue-sleep disturbance symptom cluster. Our study inclusion criteria were meant to be liberal in identifying mind-body strategies that could hold promise in treating the symptom cluster, and as such, we did not evaluate or score study quality as part of this review. Thus, we may have erred on the side of being overly inclusive at this early stage. Similarly, we did not calculate effect sizes to identify relative strength of the mind-body interventions before they have been tested in treating the full symptom cluster. ## **Conclusions** Mind-body interventions such as relaxation, CBT / CST, mediation, music and imagery may offer benefit to patients with co-occurring pain, fatigue, and sleep disturbance related to cancer. Most patients are capable of using mind-body interventions. Age and advancing disease do not need to be barriers as the strategies reviewed here require some cognitive, but very little physical effort. Many of the mind-body interventions addressed in this review could be delivered by health care providers, as social workers, health psychologists, and oncology nurses receive training in cognitive-behavioral coping strategies as part of their educational preparation. Individualized training along with written or audiotaped instructions could be used to evaluate effects on co-occurring symptoms or on a specific symptom cluster. Although no studies tested mind-body interventions specifically for the pain-fatigue-sleep disturbance symptom cluster, there is sufficient evidence to suggest that relaxation, imagery / hypnosis, CBT / CST, meditation, and music interventions hold promise as crossover treatments, that may be efficacious for the full symptom cluster. Studies have shown that relaxation can improve pain and sleep disturbance, meditation can reduce fatigue and sleep disturbance, music can reduce pain and fatigue, and imagery / hypnosis and CBT / CST interventions can produce improvements in all three symptoms. A number of unanswered questions about the effects of mind-body interventions on the pain-fatigue-sleep disturbance symptom cluster need to be
investigated. To adequately determine if any of the mind-body interventions can be recommended as treatment for the symptom cluster, investigators need to design efficacy studies that select participants based on their experiences of these three symptoms. Researchers need to avoid floor effects by establishing inclusion criteria that allow room to demonstrate improvement in more than one clustered symptom. Studies need to move away from one-group pretest-posttest designs and enhance the quality of evidence by using randomized controlled designs. Because active comparison conditions provide a stringent test, and because patients are not likely to be content "doing nothing" about bothersome symptoms, comparison / control groups should be given careful thought. Eventually, effectiveness trials that make head-to-head comparisons among mind-body strategies will be necessary to determine if one treatment is more effective than another for a particular symptom cluster, or if one treatment can produce the same outcomes at a lesser cost. ## **Acknowledgments** The authors wish to thank Lars Bland for assistance with the initial literature search and Kristen Abbott-Anderson for helpful comments on manuscript drafts. #### References - Barsevick A. The concept of symptom cluster. Semin Oncol Nurs. 2007; 23:89–98. [PubMed: 17512435] - Gift A. Symptom clusters related to specific cancers. Semin Oncol Nurs. 2007; 23:136–141. [PubMed: 17512441] - 3. Dodd MJ, Janson J, Facione N, et al. Advancing the science of symptom management. J Adv Nurs. 2001; 33:668–676. [PubMed: 11298204] - 4. Kim H, McGuire DB, Tulman L, Barsevick AM. Symptom clusters: Concept analysis and clinical implications for cancer nursing. Cancer Nurs. 2005; 28:270–282. [PubMed: 16046888] - 5. Barsevick AM. The elusive concept of the symptom cluster. Oncol Nurs Forum. 2007; 34:971–980. [PubMed: 17878126] - Williams LA. Clinical management of symptom clusters. Semin Oncol Nurs. 2007; 23:113–120. [PubMed: 17512438] - Hoffman AJ, Given BA, von Eye A, Gift AG, Given CW. Relationships among pain, fatigue, insomnia, and gender in persons with lung cancer. Oncol Nurs Forum. 2007; 34:785–792. [PubMed: 17723980] - 8. van den Beuken-van Everdingen MHJ, de Rijke JM, Kessels AG, et al. Prevalence of pain in patients with cancer: A systematic review of the past 40 years. Ann Oncol. 2007; 18:1437–1449. [PubMed: 17355955] - 9. Hickok JT, Morrow GR, Roscoe JA, Mustian K, Okunieff P. Occurrence, severity, and longitudinal course of twelve common symptoms in 1129 consecutive patients during radiotherapy for cancer. J Pain Symptom Manage. 2005; 30:433–442. [PubMed: 16310617] 10. Stone P, Richards M, Hardy J. Fatigue in patients with cancer. Eur J Cancer. 1998; 34:1670–1676. [PubMed: 9893650] - 11. National Comprehensive Cancer Network. Cancer-related fatigue: Clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2003; 1:308–331. [PubMed: 19761067] - Davidson JR, MacLean AW, Brundage MD, Schulze K. Sleep disturbance in cancer patients. Soc Sci Med. 2002; 54:1309–1321. [PubMed: 12058848] - 13. Vena C, Parker K, Cunningham M, Clark J, McMillan S. Sleep-wake disturbances in people with cancer part 1: An overview of sleep, sleep regulation, and effects of disease and treatment. Oncol Nurs Forum. 2004; 31:735–746. [PubMed: 15252429] - 14. Beck S, Dudley WN, Barsevick AM. Using a mediation model to test a symptom cluster: pain, sleep disturbance, and fatigue in cancer patients. Oncol Nurs Forum. 2005; 32:E48–E55. - 15. Honea N, Brant J, Beck SL. Treatment-related symptom clusters. Semin Oncol Nurs. 2007; 23:142–151. [PubMed: 17512442] - Miaskowski C, Lee KA. Pain, fatigue, and sleep disturbance in oncology outpatients receiving radiation therapy for bone metastasis: A pilot study. J Pain Symptom Manage. 1999; 17:320–332. [PubMed: 10355211] - 17. Theobald DE. Cancer pain, fatigue, distress, and insomnia in cancer patients. Clin Cornerstone. 2004; 6 Supp 1D:S15–S21. [PubMed: 15675653] - 18. Barsevick AM, Dudley WN, Beck SL. Cancer-related fatigue, depressive symptoms, and functional status. Nurs Res. 2006; 55:366–372. [PubMed: 16980837] - 19. Curt GA, Breitbart W, Cella D, et al. Impact of cancer-related fatigue on the lives of patients: new findings from the Fatigue Coalition. Oncologist. 2000; 5:353–360. [PubMed: 11040270] - Gupta D, Lis CG, Grutsch JF. The relationship between cancer-related fatigue and patient satisfaction with quality of life in cancer. J Pain Symptom Manage. 2007; 34:40–47. [PubMed: 17532179] - 21. Payne R. Recognition and diagnosis of breakthrough pain. Pain Med. 2007; 8 S1:S3–S7. [PubMed: 17280600] - 22. Serlin RC, Mendoza TR, Nakamura Y, Edwards KR, Cleeland CS. When is cancer pain mild, moderate, or severe? Grading pain severity by its interference with function. Pain. 1995; 61:277–284. [PubMed: 7659438] - 23. Strang P. Existential consequences of unrelieved cancer pain. Palliat Med. 1997; 11:299–305. [PubMed: 9373581] - 24. National Center for Complementary and Alternative Medicine. Mind-body medicine: An overview. http://nccam.nih.gov/health/backgrounds/mindbody.htm - 25. Breitbart W, Gibson CA. Psychiatric aspects of cancer pain management. Prim Psychiatry. 2007; 14:81–91. - Gift AG, Jablonski A, Stommel M, Given CW. Symptom clusters in elderly patients with lung cancer. Oncol Nurs Forum. 2005; 31:203–212. - 27. Lenz ER, Pugh LC, Milligan RA, Gift AG, Suppe F. The middle-range theory of unpleasant symptoms: An update. Adv Nurs Sci. 1997; 19:14–27. - 28. Parker PK, Kimble LP, Dunbar SB, Clark PC. Symptom interactions as mechanisms underlying symptom pairs and clusters. J Nurs Scholarsh. 2005; 37:209–215. [PubMed: 16235860] - 29. DiStasio SA. Intregrating yoga into cancer care. Clin J Oncol Nurs. 2008; 12:125–130. [PubMed: 18258582] - 30. McCaffery, M.; Pasero, C. Pain: Clinical Manual. 2nd ed.. St. Louis: C.V. Mosby; 1999. - 31. Jacobsen, E. Progressive relaxation. Chicago, IL: University of Chicago Press; 1929. - 32. Snyder, M.; Lindquist, R. Complementary / Alternative Therapies in Nursing. 3rd ed.. New York: Springer Publishing; 1998. - 33. Hernandez-Reif M, Field T, Ironson G, et al. Natural killer cells and lymphocytes increase in women with breast cancer following massage therapy. Int J Neurosci. 2005; 115:495–510. [PubMed: 15809216] - 34. Anderson KO, Cohen MZ, Mendoza TR, et al. Brief cognitive-behavioral audiotape interventions for cancer related pain. Cancer. 2006; 107:207–214. [PubMed: 16708359] 35. Tsai PS, Chen PL, Lai YL, Lee MB, Lin CC. Effects of electromyography biofeedback-assisted relaxation on pain in patients with advanced cancer in a palliative care unit. Cancer Nurs. 2007; 30:347–353. [PubMed: 17876179] - 36. Domar AD, Noe JM, Benson H. The preoperative use of the relaxation response with ambulatory surgery patients. Hosp Top. 1987; 65(4):30–35. [PubMed: 10318002] - 37. Decker TW, Cline-Elsen J. Relaxation therapy as an adjunct in radiation oncology. J Clin Psychol. 1992; 48:388–393. [PubMed: 1602030] - 38. Cannici J, Malcolm R, Peek LA. Treatment of insomnia in cancer patients using muscle relaxation training. J Behav Ther Exp Psychiatry. 1983; 14:251–256. [PubMed: 6358270] - 39. Kwekkeboom KL, Wanta B, Bumpus M. Individual difference variables and the effects of progressive muscle relaxation and analgesic imagery interventions on cancer pain. J Pain Symptom Manage. 2008; 36:604–615. [PubMed: 18504089] - 40. Haase O, Schwenk W, Hermann C, Muller JM. Guided imagery and relaxation in conventional colorectal resections: A randomized controlled partially blinded trial. Dis Colon Rectum. 2005; 48:1955–1963. [PubMed: 15991068] - 41. Hart J. Guided imagery. Altern Complement Ther. 2008; 14:295–299. - 42. Gay M, Hanin D, Luminet O. Effectiveness of an hypnotic imagery intervention on reducing alexithymia. Contemp Hypnosis. 2008; 25:1–13. - 43. Lebovits A. Cognitive-behavioral approaches to chronic pain. Prim Psychiatry. 2007; 14:48-59. - 44. Milling LS. Recent developments in the study of hypnotic pain reduction: A new golden era of research? Contemp Hypnosis. 2008; 25:165–177. - 45. Kwekkeboom KL, Kneip J, Pearson L. A pilot study to predict success with guided imagery for cancer pain. Pain Manage Nurs. 2003; 4:112–123. - 46. Ebell H. The therapist as travelling companion to the chronically ill: Hypnosis and cancer related symptoms. Contemp Hypnosis. 2008; 25:46–56. - 47. Sloman R, Brown P, Aldana E, Chee E. The use of relaxation for the promotion of comfort and pain relief in persons with advanced cancer. Contemp Nurse. 1994; 3:6–12. [PubMed: 8136641] - Elkins G, Marcus J, Stearns V, et al. Randomized trial of a hypnosis intervention for treatment of hot flashes among breast cancer survivors. J Clin Oncol. 2008; 26:5022–5026. [PubMed: 18809612] - 49. Arathuzik D. Effects of cognitive-behavioral strategies on pain in cancer patients. Cancer Nurs. 1994; 17:207–214. [PubMed: 8055491] - Syrjala KL, Cummings C, Donaldson GW. Hypnosis or cognitive behavioral training for the reduction of pain and nausea during cancer treatment: a controlled clinical trial. Pain. 1992; 48:137–146. [PubMed: 1350338] - 51. Syrjala KL, Donaldson GW, Davis MW, Kippes ME, Carr JE. Relaxation and imagery and cognitive-behavioral training reduce pain during cancer treatment: A controlled clinical trial. Pain. 1995; 63:189–198. [PubMed: 8628584] - 52. Cohen M, Fried G. Comparing relaxation training and cognitive-behavioral group therapy for women with breast cancer. Res Soc Work Pract. 2007; 17:313–323. - Thorn, BE. Cognitive therapy for chronic pain: A step-by-step guide. New York: The Guilford Press; 2004. - 54. Robb KA, Williams JE, Duvivier V, Newham DJ. A pain management program for chronic cancer-treatment-related pain: A preliminary study. J Pain. 2006; 7:82–90. [PubMed: 16459273] - 55. Dalton JA. Education for pain management: A pilot study. Patient Educ Couns. 1987; 9:155–165. - 56. Armes J, Chalder T, Addington-Hall J, Richardson A, Hotopf M. A
randomized controlled trial to evaluate the effectiveness of a brief, behaviorally oriented intervention for cancer-related fatigue. Cancer. 2007; 110:1385–1395. [PubMed: 17661342] - 57. Gielissen MFM, Verhagen CAHHVM, Bleijenberg G. Cognitive behaviour therapy for fatigued cancer survivors: long-term follow-up. Br J Cancer. 2007; 97:612–618. [PubMed: 17653075] - 58. Gielissen MFM, Vehagen S, Witjes F, Bleijenberg G. Effects of cognitive behaviour therapy in severely fatigued disease-free cancer patients compared with patients waiting for cognitive - behavior therapy: A randomized controlled trial. J Clin Oncol. 2006; 24:4882–4887. [PubMed: 17050873] - 59. Fawzy FI, Cousins N, Fawzy NW, et al. A structured psychiatric interventions for cancer patients. Arch Gen Psychiatry. 1990; 47:720–725. [PubMed: 2378543] - Clark M, Isaacks-Downton G, Wells N, et al. Use of preferred music to reduce emotional distress and symptom activity during radiation therapy. J Music Ther. 2006; 43:247–265. [PubMed: 17037953] - 61. Gaston-Johansson F, Fall-Dickson J, Nanda J, et al. The effectiveness of the comprehensive coping strategy program on clinical outcomes in breast cancer autologous bone marrow transplantation. Cancer Nurs. 2000; 23:277–285. [PubMed: 10939175] - 62. Williams SA, Schreier AM. The role of education in managing fatigue, anxiety, and sleep disorders in women undergoing chemotherapy for breast cancer. Appl Nurs Res. 2005; 18:138–147. [PubMed: 16106331] - 63. Savard J, Simard S, Ivers H, Morin CM. Randomized study on the efficacy of cognitive-behavioral therapy for insomnia secondary to breast cancer, part I: Sleep and psychological effects. J Clin Oncol. 2005; 23:6083–6096. [PubMed: 16135475] - Quesnel C, Savard J, Simard S, Ivers H, Morin CM. Efficacy of cognitive-behavioral therapy for insomnia in women treated for nonmetastatic breast cancer. J Consult Clin Psychol. 2003; 71:189– 200. [PubMed: 12602439] - 65. Epstein DR, Dirksen SR. Randomized trial of a cognitive-behavioral intervention for insomnia in breast cancer survivors. Oncol Nurs Forum. 2007; 34:E51–E59. [PubMed: 17878117] - 66. Dirksen SR, Epstein DR. Efficacy of an insomnia intervention on fatigue, mood and quality of life in breast cancer survivors. J Adv Nurs. 2008; 61:664–675. [PubMed: 18302607] - 67. Berger AM, VonEssen S, Kuhn BR, et al. Feasibility of a sleep intervention during adjuvant breast cancer chemotherapy. Oncol Nurs Forum. 2002; 29:1431–1441. [PubMed: 12432414] - 68. Berger AM, VonEssen S, Kuhn BR, et al. Adherence, sleep, and fatigue outcomes after adjuvant breast cancer chemotherapy: Results of a feasibility intervention study. Oncol Nurs Forum. 2003; 30:513–522. [PubMed: 12719750] - 69. Espie CA, Fleming L, Cassidy J, et al. Randomized controlled clinical effectiveness trial of cognitive behavior therapy compared with treatment as usual for persistent insomnia in patients with cancer. J Clin Oncol. 2008; 26:4651–4658. [PubMed: 18591549] - Davidson JR, Waisberg JL, Brundage MD, Maclean AW. Nonpharmacologic group treatment of insomnia: A preliminary study with cancer survivors. Psychooncology. 2001; 10:389–397. [PubMed: 11536417] - 71. Arving C, Sjödén P, Bergh J, et al. Individual psychosocial support for breast cancer patients. Cancer Nurs. 2007; 30:E10–E19. [PubMed: 17510577] - 72. Dalton JA, Keefe FJ, Carlson J, Youngblood R. Tailoring cognitive-behavioral treatment for cancer pain. Pain Manag Nurs. 2004; 51:3–18. [PubMed: 14999649] - 73. Vilela LD, Nicolau B, Mahmud S, et al. Comparison of psychosocial outcomes in head and neck cancer patients receiving a coping strategies intervention and control subjects receiving no intervention. J Otolaryngol. 2006; 35:88–96. [PubMed: 16527026] - 74. Kreitzer, MJ. Meditation. In: Snyder, M.; Lindquist, R., editors. Complementary / Alternative Therapies in Nursing. 3rd ed.. New York: Springer Publishing; 1998. p. 123-137. - 75. Ospina MB, Bond K, Karkhaneh MD, et al. Clinical trials of meditation practices in health care: Characteristics and quality. J Altern Complement Med. 2008; 14:1199–1213. [PubMed: 19123875] - 76. Carmody J, Baer RA. Relationships between mindfulness practice and levels of mindfulness, medical and psychological symptoms and well-being in a mindfulness-based stress reduction program. J. Behav Med. 2008; 31:23–33. [PubMed: 17899351] - 77. Carlson LE, Garland SN. Impact of mindfulness-based stress reduction (MBSR) on sleep, mood, stress, and fatigue symptoms in cancer outpatients. Int J Behav Med. 2005; 12:278–285. [PubMed: 16262547] - 78. Tiexeira ME. Meditation as an intervention for chronic pain: an integrative review. Holistic Nurs Pract. 2008; 22:225–234. 79. Ong JC, Shapiro SL, Manber R. Combining mindfulness meditation with cognitive-behavior therapy for insomnia: A treatment-development study. Behav Ther. 2007; 39:171–182. [PubMed: 18502250] - Kieviet-Stinjnen A, Visser A, Garssen B, Hudig W. Mindfulness-based stress reduction training for oncology patients: Patients' appraisal and changes in well-being. Patient Educ Couns. 2008; 72:436–442. [PubMed: 18657376] - 81. Moadel AB, Shah C, Wylie-Rosett J, et al. Randomized controlled trial of yoga among a multiethnic sample of breast cancer patients: Effects on quality of life. J Clin Oncol. 2007; 25:4387–4395. [PubMed: 17785709] - 82. Shapiro SL, Bootzin RR, Figueredo AJ, Lopez AM, Schwartz GE. The efficacy of mindfulness-based stress reduction in the treatment of sleep disturbance in women with breast cancer: An exploratory study. J Psychosom Res. 2003; 54:85–91. [PubMed: 12505559] - 83. Chlan, L. Music therapy. In: Snyder, M.; Lindquist, R., editors. Complementary / Alternative Therapies in Nursing. 3rd ed.. New York: Springer Publishing; 1998. p. 243-257. - 84. Magill L. The use of music therapy to address the suffering in advanced cancer pain. J Palliat Care. 2001; 17:167–172. [PubMed: 11816757] - 85. Lai HL, Good M. Music improves sleep quality in older adults. J Adv. Nurs. 2006; 53:134–144. [PubMed: 16422710] - 86. Szabo A, Small A, Length M. The effects of slow- and fast-rhythm classical music on progressive cycling to voluntary physical exhaustion. J Sports Med Phys Fitness. 1999; 39:220–225. [PubMed: 10573664] - 87. Siedliecki SL, Good M. Effects of music on power, pain, depression, and disability. J Adv Nurs. 2006; 54:553–562. [PubMed: 16722953] - 88. Cholburi JSN, Hanucharurnkul S, Waikakul W. Effects of music therapy on anxiety and pain in cancer patients. Thai J Nurs Res. 2004; 8:173–181. - 89. Zimmerman L, Pozehl B, Duncan K, Schmitz R. Effects of music in patients who had chronic cancer pain. Western J Nurs Res. 1989; 11:296–309. - 90. Beck SL. The therapeutic use of music for cancer related pain. Oncol Nurs Forum. 1991; 18:1327–1337. [PubMed: 1762973] - 91. Kwekkeboom KL. Music versus distraction for procedural pain and anxiety in patients with cancer. Oncol Nurs Forum. 2003; 30:433–440. [PubMed: 12719743] - 92. Ferrer AJ. The effect of live music on decreasing anxiety in patients undergoing chemotherapy treatment. J Music Ther. 2007; 44:242–255. [PubMed: 17645387] - 93. Burns DS, Azzouz F, Sledge R, et al. Music imagery for adults with acute leukemia in protective environments: A feasibility study. Support Care Cancer. 2008; 16:507–513. [PubMed: 17891547] - 94. McNair, DM.; Loor, M.; Droppleman, LF. Profile of mood states. San Diego, CA: Educational and Industrial Testing Service; 1971. - 95. Smets EMA, Garssen B, Bonke B, DeHaes JCJM. The Multidimensional Fatigue Inventory (MFI): Psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995; 39:315–325. [PubMed: 7636775] - 96. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989; 28:193–213. [PubMed: 2748771] - 97. Aaronson NK. The EORTC-QLQ-30: A quality of life instrument for use in international clinical trials in oncology. Qual Life Res. 1993; 2:51. - 98. Morin, CM. Insomnia: Psychological assessment and management. New York: Guilford Press; 1993. | Mind-Body
Intervention | Pain | Fatigue | Sleep Disturbance | |---------------------------------|------|---------|-------------------| | CBT / Coping Skills
Training | X | x | X | | Guided Imagery or
Hypnoxis | X | | X | | Meditation | | × | X | | Music | X | x | | | Relaxation | X | | x | | Virtual Reality | | x | | **Figure 1.** Evidence Supporting Effects of Mind-Body Interventions on Pain, Fatigue, and Sleep Disturbance Table 1 Summary of Studies of Relaxation Interventions for Cancer-Related Pain, Fatigue, and Sleep Disturbance | Author | z | Sample | Design | Treatment | Control / | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |---------------------------|----|--|--------|--|---|--|--------------------|---------------------------------| | Tsai et al.,
2007 (35) | 37 | Hospitalized patients with advanced cancer and pain rated ≥ 3. | RCT | Biofeedback assisted Relaxation: Six 45-minute training sessions using EMG biofeedback and diaphragmatic breathing, delivered over a 4- week period. | Control: Equal time spent with a nurse. | Significantly less pain
in the relaxation group
compared to the control.
Brief Pain Inventory | Not measured. | Not measured. | Table 2 Summary of Studies of Guided Imagery / Hypnosis Interventions for Cancer-Related Pain, Fatigue, and Sleep Disturbance | Sleep
Disturbance
Outcome | Not measured. | Significant improvement in sleep scores in hypnosis group compared to control. Medical Outcomes Study – Sleep Scale. | Not measured. | Not measured. |
Not measured. | Not measured. | |---------------------------------|--|--|--|--|--|---| | Fatigue
Outcome | Not measured. | Not measured. | No significant differences in fatigue within or between groups. 0-100 Fatigue | Not measured. | Not measured. | Not measured. | | Pain Outcome | Significant reduction in pain intensity and suffering from pain in hypnosis condition compared to control. 0–100 VAS | Not measured. | No significant differences in pain or analgesic use within groups or between groups. O-100 Pain VAS | Significant reduction in pain intensity. <i>0–10 Pain NRS</i> | Significantly greater reduction in pain intensity and pain-related distress immediately post-treatment with imagery and PMR compared to control. (Imagery was not compared to PMR) 0–10 Pain NRS | Significantly lower pain intensity, overall pain severity, and p.r.n. use of nonopiate analgesics in both the intervention groups compared to the control group. | | Control /
comparison | Control: Treatment-as-usual | Control: No treatment | Relaxation: 12 minute audiotape of passive PMR; used 3 x/ day for 2 days before surgery and until discharge. Standard care: No psychological intervention. | None | Relaxation: 15-minute audiotaped PMR exercise; used 2 × / day for one day. Control: 15-minute informational recording (attention control); used once / day for two days. | Control: Treatment as Usual | | Treatment | Self-Hypnosis: Specific technique, duration, frequency not described | Hypnosis: Suggestions for relaxation, mental images of coolness, dissociation from hot flashes, and other images; delivered in five 50-minute weekly sessions + audiotape for home practice. | Guided Imagery: 12 minute audiotape of imagined journey to a place of peace, comfort and safety; used 3 ×/day for 2 days before surgery and until discharge. | Guided Imagery: Audiotape of 12-min pleasant nature imagery; used once. | Imagery: 15-minute audiotaped analgesic imagery exercise; used $2 \times /$ day for one day. | Guided Imagery (Audiotaped): 30-min audiotaped PMR and imagery of a peaceful scene; used 2 ×/ week for 2 weeks + practice twice a day for an additional week. Guided Imagery (Live Guide): Live nurse-guided | | Design | Crossover | RCT | RCT | One group
pretest-
posttest | Crossover trial | RCT | | Sample | Hospitalized patients with cancer-related pain | Women with non-metastatic breast cancer who had completed realment and were having hot flashes. | Patients having curative surgery for colorectal cancer | Hospitalized
patients with
cancer pain | Hospitalized patients with cancer- related pain | Hospitalized patients with cancer pain | | z | 32 | 09 | 09 | 62 | 40 | 29 | | Author | Ebell, 2008 (46) | Elkins et al., 2008 (48) | Haase et al., 2005
(40) | Kwekkeboo m,
Kneip & Pearson,
2003 (45) | Kwekkeboo m,
Wanta &
Bumpus, 2008
(39) | Sloman et al.,
1994 (47) | | Author | Z | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |--------|---|--------|--------|--|-------------------------|--|--------------------|---------------------------------| | | | | | administration of PMR and imagery script as above; used 2 ×/ week for 3 weeks + practice twice a day for an additional week. | | McGill Pain
Questionnaire (Short
Form)
Pain VAS | | | Table 3 Summary of Studies of CBT / Coping Skills Training Interventions for Cancer-Related Pain, Fatigue, and Sleep Disturbance | Author | Z | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |----------------------------|-----|--|--------|---|---|---|--|---| | Arathuzik, 1994 (49) | 24 | In- and Out-
patients with
pain from
metastatic
breast
cancer | RCT | CST: 120 minutes of PMR, deep breathing, and images of inhaling energy, exhaling pain, and being in a conforting place + various distributions techniques and positive affirmations. Used one time. | Relaxation and Imagery: 75 minutes of PMR, deep breathing, and images of inhaling energy, exhaling pain, and being in a comforting place. Used one time. Control: Treatment-as-usual | No significant differences in pain intensity or pain distress between groups 0-10 VAS | No significant differences in fatigue between groups POMS – Fatigue subscale | Not measured. | | Armes et al., 2007
(56) | 55 | Adults with cancer- related fatigue receiving chemothera py | RCT | CBT: Discussion of the meaning of cancerrelated fatigue, aims and effects of coping strategies on fatigue, self-monitoring of fatigue and sleep disturbance, education and written information about fatigue management, goal setting, activity scheduling, graded task management, cognitive restructuring. Delivered in three individual 60-minute sessions, every 3-4 weeks. | Control: Treatment-as-usual | Measured, but not reported. | Trend toward lower fatigue rating in CBT group versus control. 100-mm VAS Significant improvement in physical fatigue. Multidimensional Fatigue Inventory – Physical Fatigue Subscale No difference in fatigue-related distress. Fatigue Outcome Measure | Measured, but not reported. | | Arving et al., 2007 (71) | 179 | Patients with breast cancer starting adjuvant treatment | RCT | Nurse-Delivered CBT: Psychosocial support using cognitive- behavioral coping strategies delivered in 45–60 minute one- on-one sessions. Number of sessions were tailored to individual needs. Psychologist- Delivered CBT: Psychosocial support using cognitive- behavioral coping strategies delivered in 45–60 minute one- on- | Control: Treatment-as- usual. | No significant differences in pain between groups BORITC-QLQ 30 Pain Subscale | No significant differences in fatigue between groups EORTC-QLQ 30 Fatigue Subscale | Significantly less insomnia in nurse- led group than control. CORTC-QLQ Insomnia Subscale | NIH-PA Author Manuscript Kwekkeboom et al. | Author | Z | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |------------------------------------|-----|--|-----------------------------|---|--|---|--|---| | | | | | one sessions. Number of sessions were tailored to individual needs. | | | | | | Berger et al., 2002 & 2003 (68–69) | 25 | Women with early stage (I-II) breast cancer receiving chemothera py. | One group repeated measured | Sleep hygiene Phase I: Individualized plan of relaxation exercises, sleep restriction, and stimulus control during 4 chemotherapy cycles. Phase II: Revised sleep hygiene activities at 30, 60, and 90 days after the last chemo treatment. | None | Not measured | PHASE I: No significant changes in fatigue. PHASE II: No significant changes in fatigue. Piper Fatigue Scale | PHASE I: No significant changes in sleep. PHASE II: Slignificant reduction in the number of nightime awakenings and length of daytime naps
over time. Wrist actigraph Daily diary Pittsburgh Sleep Quality hadex. | | Clark et al., 2006 (60) | 63 | Outpatients with cancer undergoing curative radiation therapy | RCT | CST: Personal preference of relaxing or distracting music plus training in PMR, imagery, and positive self-talk; 90-minute audiotape of music with instructions for use anytime except during radiation treatment. | Control: Treatment-as- usual. | No significant differences in pain between groups. 0–10 Pain NRS | No significant differences in fatigue between groups. POMS – Fatigue subscale | Not measured. | | Cohen & Fried, 2007 (52) | 170 | Women with
early stage
breast
cancer: 2-12
months post-
treatment | RCT | CBT: Group training in reducing negative and automatic thoughts, positive reframing, distraction, problem- solving, decision- making, and activity scheduling. Met weekly for 90 min × 9 weeks + practice between meetings. | Relaxation and Imagery: Group training in deep breathing, autogenic relaxation, and imagery. Met weekly for 90 min *9 weeks + practice between meetings. Control: Treatment-as-usual | Not measured. | Significantly greater decrease in fatigue in the relaxation and imagery group compared to CBT and control groups. Fatigue Symptom Inventory | Significantly greater decrease in sleep difficulty in the relaxation and imagery group compared to CBT and groups. Mini Sleep Questionnaire | | Dalton et al., 2004 (72) | 131 | Adults with chronic | RCT | Tailored CBT (T CBT): Elements of standard CBT matched | Control: Treatment-as- usual. | IMMED:
Significantly
greater | IMMED: No
significant
differences in | IMMED: No
significant
differences in | | Author | Z | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |---|----|--|-----------------------------|--|---|---|---|---| | | | cancer-related pain | | identified using a biobehavioral pain profile survey; met individually for 1 hour, once / week × 5 weeks. Standard CBT (STC) Counseling focused on thoughts and feelings related to pain plus training in 6-8 coping strategies; met individually for 1 hour, once / week × 5 weeks. | | improvement in worst pain in T-CBT than standard CBT and control groups. 6-MONTHS: Significantly greater improvement in pain in standard CBT than T-CBT and control groups. | fatigue between groups groups G-MONTHS: Significantly greater improvement in fatigue in the control group than PT-CBI. Symptom Distress Scale | sleep between groups. 6-MONTHS: No differences in sleep between groups. Symptom Distress Scale | | Dalton, 1987 (55) | 30 | Adults with disease-related cancer pain | RCT | Pain self-care program: Education about pain physiology training in 3 self- management methods: distraction, relaxation, and cutaneous stimulation. Met one time for individual training + recommendations to practice at home. | Control: (Not described) | No significant differences in pain between groups. | Not measured. | Not measured. | | Davidson et al., 2001 (70) | 14 | Adults with breast, GI, or GYN cancers with c/o insomnia | One group Pretest- posttest | Sleep Therapy Program: Stimulus control therapy + training in relaxation and other cognitive strategies; met in groups for 60- 90 minutes, once / week for the first 4 weeks and once again at week 8. | None | No significant reduction in pain. EORTC QLQ C-30 Pain Scale | Significant improvement in fatigue at 8 weeks. EORTC QLQ C.30 Fatigue Scale | Significant improvement in insomnia at 4 and 8 weeks. Sleep Diary Sleep Diary Bleep Index EORTC QLQ C-30 Insomnia Item | | Epstein & Dirksen,
2007; Dirksen &
Epstein, 2008 (65°C
66) | 72 | Women with stage I – III breast cancer, at least 3 months post-treatment with c/o sileep disturbance | RCT | Cognitive Behavioral Training: Stimulus control, sleep restriction, sleep hygiene, and sleep education for two group sessions and two phone interviews. | Control: Sleep hygiene and sleep education for two group sessions and two phone interviews. | Not measured | Trend toward greater reduction in fatigue among CBT participants. POMS – Fatigue subscale | Significantly less time in bed and greater improvement in sleep quality in CBT group, but no difference in insomnia severity. | | Sleep
Disturbance
Outcome | Daily sleep
diary Sleep
quality
questionnaire
Wrist
actigraph
Insomnia
Severity Index | Significantly greater improvement in sleep immediately post-treatment and at 6 months control. Pittsburgh Sleep Quality Index Epworth Sleep iness Scale Sleep Diary Wrist actigraph | Not measured. | Not measured. | |---------------------------------|--|--|---|--| | Fatigue
Outcome | | Significantly greater improvement in fatigue immediately post-treatment and at 6 months compared to control Fatigue Symptom Inventory | No differences between groups in fatigue immediately post-treatment, but significantly less fatigue in the treatment group at 6 month follow-up. POMS – Fatigue subscale | No significant differences in fatigue between groups. 100-mm Fatigue VAS | | Pain Outcome | | Not measured | Not measured. | No significant differences in pain between groups. Pain-o-meter | | Control /
comparison | | Control: Treatment-as-usual | Control: No treatment or therapist contact | Control: Treatment-as- usual. | | Treatment | | Nurse-led CBT: Sleep information, sleep hygiene, sleep scheduling, relaxation, imagery, distraction and cognitive strategies to manage thoughts about sleep; met in groups for 50 minutes once / week x 5 weeks. | CBT: Health education, illness-related problem-solving skills, stress management (relaxation techniques), and psychological support; met in groups for 90-minutes, once / week x 6 weeks. | Comprehensive coping strategy program (CCSP): Preparatory info, avoiding negative coping strategies, using positive coping self-statements, relaxation + imagery; one time training, reinforced twice. | | Design | | RCT | RCT | RCT | | Sample | | Adults with breast, prostate, colorectal or GYN cancers, at least 1 month post-treament and with c/o chronic insomnia | Adults with
early stage (1
– II)
malignant
melanoma | Women with
stage II-IV
breast
cancer
undergoing
autologous
BMT | | Z | | 150 | 08 | 128 | | Author | | Espie et al., 2008
(67) | Fawzy et al., 1990
(59) | Gaston- Johansson et
al., 2000 (61) | | Author | z | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |---|-------------------------------------|--|---|--|---|---|---|---| | | | | | relaxation + imagery daily and as needed. | | | | | | Gielissen, Vehagen, & Bleijenberg, 2006; 2007 (57–58) | 112 (N
= 68 at
follow-
up) | Adults with complaints of severe fatigue, who had completed cancer treatment at least 1 year prior | RCT with follow-up after waitlist controls received treatment | CBT: Modules addressing: coping with cancer, fear of recurrence, dysfunctional thoughts about fatigue, dysregulated sleep, dysregulated activity, social support. Modules delivered one-on-one and based on individual need in three sessions over 9 – 12 weeks. | Control: Waitlist | Not measured. | IMMEDIATELY: Significantly lower fatigue severity in CBT group. FOLLOW-UP (1- 4
YEARS): Significantly lower fatigue severity versus pre-treatment. Checklist of Individual Strengths - Fatigue subscale | Measured, but not reported. | | Quesnel et al, 2003
(64) | 10 | Women with
breast
cancer, post-
treatment,
with chronic
insomnia | Crossover | CBT: Training in stimulus control, sleep restriction strategies, fatigue management, cognitive reframing, and sleep hygiene. Met in groups for 90-minutes, once / week x 8 weeks. | Control: 3-10 week pre-CBT period of keeping a daily sleep diary. | Not measured. | Significant pre- to post-treatment improvement in general and physical fatigue. Multidimensional Fatigue Inventory | Significant pre-to post-treatment improvement in total wake time and sleep efficiency. Sleep Diary Insomnia | | Robb et al., 2006
(54) | 13 | Adults with chronic cancer-related pain | One-group pretest- posttest | Pain Management Training Program: Pain theory, goal setting, self- monitoring, exercise, relaxation, cognitive coping skills, and relapse prevention. Met individually for Gominutes, once a week × 4 weeks, then once every 2-4 weeks × 3-6 mos. | None | Significant reductions in present pain, worst pain, and average pain. No change in least pain. Brief Pain Status (present pain) 0–10 NRS (worst & average pain) | Not measured. | Not measured. | | Savard, et al., 2005
(63) | 28 | Women with stage I-III breast cancer post-treatment with chronic insomnia | RCT | CBT: Combined stimulus control therapy, sleep restriction, cognitive restructuring, sleep hygiene, and fatigue and stress management strategies; met in | Control: Wait list | Not measured. | No significant differences between groups. Multidimensional Fatigue Inventory | Significantly greater improvement in sleep efficiency, total wake time, sleep onset latency, and waking | | | z | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |--|-----|--|---|---|---|--|--|---| | | | | | groups for 90- minutes,
once / week x 8 weeks | | | | after sleep
onset in the
treatment
group.
Sleep Diary
Insomnia
Severity Index | | Syrjala, Cummings & Donaldson, 1992 (50) | 67 | Hospitalized patients with hematologic cancers having bone marrow transplant | RCT | CBT: Pain education and training in PMR, autogenic relaxation, cognitive restructuring, goal setting, and exploration of meaning with positive self-statements; met for two 90-minute sessions prior to hospital admission, then ten 30-minute booster sessions held twice weekly during hospitalization. | Relaxation and Imagery: Relaxation + imagery of the patient's preference; met for two 90-minute sessions prior to hospital admission, then ten 30-minute booster sessions held twice weekly during hospitalization. Attention Control: Equal time spent talking with a psychologist; no new coping skills introduced. | Significantly less pain in the hypnosis group compared to CBT training and attention and attention. No differences between CBT and control group. If00-mm Pain VAS | Not measured. | Not measured. | | (51) (51) | 94 | Hospitalized patients with hematologic cancers having bone marrow transplant | RCT | CBT: Pain education and training in PMR, autogenic relaxation, pleasant and pain-transforming imagery, positive self-statements, distraction, and goals setting; met for two 90-minute sessions prior to hospital admission, then ten 30-minute booster sessions and ten 20-40 minute practice sessions during hospitalization. | Relaxation and Imagery: Training in PMR, autogenic relaxation, pleasant and paintral areas of two 90-minute sessions prior to hospital admission, then for to hospital admission, then 30-minute booster sessions and ten 20-40-minute practice sessions during hospitalization. Attention Control: Psychotherapeutic support. Control: Treatment-as- usual. | Significantly less pain in relaxation and imagery and CBT groups compared to control. No difference difference and Relaxation + Imagery 100-mm Pain VAS | Not measured. | Not measured. | | 1 | 138 | Patients with head and neck cancer, post-treatment | Quasi-experimental
(Controls matched by
stage of disease and time
since diagnosis) | Nucare program: Training in positive coping and ways of thinking, using social support, problem solving, goal setting, healthy lifestyle, and relaxation. Patient-choice of delivery format group, one-on-one, or self-training. | Control: Not described | No significant differences in pain between groups. EORTC-QLQ 30 Pain subscale | No significant differences in fatigue between groups. EORTC-QLQ 30 Fatigue subscale | No significant differences in sleep between groups. EORTC-QLQ 30 Sleep Disturbance item | | San | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |---------------------------------------|--------|--------|---|------------------------------|---------------|---|------------------------------------| | Women RCT newly diagnosed with breast | RCT | | Self-Care Behavior
Training: Treatment-
as-usual + 20-min | Control: Treatment-as-usual. | Not measured. | Lower incidence of fatigue in the Self- Care group. | Lower incidence of sleep | | cancer
starting | | | education about relaxation and | | | between groups in
fatigue severity or | the Self-Care
group. No | | chemothera
py | | | exercise, set to music; instructed to listen to the tape 12- 24 hours | | | number of self-
care behaviors
used. | difference
between
groups in | | | | | before each cycle of
chemotherapy and as | | | Self-Care Diary
1–5 Fatigue NRS | sleep
disturbance | | | | | often as needed during | | |) | severity or | | | | | | | | | self- care | | | | | | | | | behaviors | | | | | | | | | nsed. | | | | | | | | | Self-Care | | | | | | | | | Diary 1-5 | | | | | | | | | Sleep NRS | Table 4 Summary of Studies of Meditation Interventions for Cancer-Related Pain, Fatigue, and Sleep Disturbance | Sleep
Disturbance
Outcome | Significant improvement in sleep disturbance preto posst to posst to posst Pursburgh Sleep Quality Index | Not measured. | Not Measured | No significant differences in sleep between groups. Sleep Diary | |---------------------------------|---|--|--|---| | Fatigue
Outcome | Significant improvement in fatigue pre- to post treament. POMS – Fatigue subscale | No significant changes in fatigue. POMS, Short Form – Fatigue subscale. | No significant difference in fatigue between groups. Functional Assessment of Chronic Illness Therapy-Fatigue. | Not measured. | | Pain Outcome | Not measured. | Measured, but not reported. | Not Measured | Not measured. | | Control /
comparison | None | None | Control: Waitlist. | Control: Free choice of stress management techniques (talking with a friend, exercising) plus workbook including support, community aresources, poetry and diary for journaling. Once a week for 6 weeks. | | Treatment | Mindfulness based stress reduction: Mindfulness theory, meditation, and gentle yoga poses; met in groups for 90- minutes sessions, once / week x 8 weeks plus 45 minute home sessions 6 times a week for 8 weeks. | Mindfulness based stress reduction: Training in meditation techniques, systematic body monitoring, shifting limits, recognizing thoughts, recognizing daily stresses, and techniques to relieve stress; met in groups for 150-minute sessions, once / week × 8 weeks plus 45 minute daily practice at home. One 8 hr day of silent meditation during week 6. | Meditation: Stretching, yoga poses, breathing, and meditation; delivered in 90- minute sessions once / week for 12 weeks plus audiotaped instructions for home practice. |
Mindfulness based stress reduction: Meditation techniques, body awareness, focused breathing, and gentle yoga poses delivered in 2-bour sessions, once / week x 6 weeks plus a 6-hour silent retreat. | | Design | One-group pretest posttest | One-group pretest posttest | RCT | RCT | | Sample | Outpatients with cancer | Outpatients receiving treatment for cancer | Women with stage I – III breast cancer | Women with Stage II
breast cancer, in
remission, within 2-
years post- treatment | | z | 63 | 47 | 128 | 63 | | Author | Carlson & Garland,
2005 (77) | Kieviet-
Stijnen et
al., 2008
(80) | Moadel,
et al.,
2007 (81) | Shapiro et al., 2003 (82) | Table 5 Summary of Studies of Music Interventions for Cancer-Related Pain, Fatigue, and Sleep Disturbance | Author | Z | Sample | Design | Treatment | Control /
comparison | Pain Outcome | Fatigue
Outcome | Sleep
Disturbance
Outcome | |--|----|--|-----------|---|---|---|--|---------------------------------| | Beck, 1991 (90) | 15 | Outpatients with cancer- related pain | Crossover | Music: Personal preference of music style; listened for 45 minutes, twice a day x 3 days. | Control: 60-cycle hum; listened for 45 minutes, twice a day × 3 days. | Significant reduction in pain with both music and control, but no differences between groups. McGill Pain Questionnaire Present Pain Intensity Scale Pain VAS | Not measured. | Not measured. | | (93) | 49 | Inpatients receiving intensive chemotherapy for acute leukemia or high-grade lymphoma. | RCT | Music: Treatment as usual + 45-minute sessions with a music therapist twice a week × 4 weeks + recommendations to practice at least once / day with recordings of light classical or new age music. | Control: Treatment-as-usual | Not measured. | Fatigue scores decreased in both groups. No significant differences in fatigue between groups. Functional Assessment of Chronic Illness Therapy-Fatigue. | Not measured. | | Cholburi,
Hanucharur nkul &
Waikakul, 2004
(88) | 30 | Hospitalized patients with cancer- related pain | Crossover | Music: Personal preference of music; listened for 30-minutes, twice a day \times 2 days. | Control: Use of headphones without music; 30- minutes, twice a day \times 2 days. | Significantly greater reduction in pain with music than control, but only during one trial. | Not measured. | Not measured. | | Fепет, 2007 (92) | 50 | Outpatients with cancer receiving chemothera py | RCT | Music: Personal preference of music style, played live (guitar and singing) for 20 minutes during one chemotherapy session. | Control: Treatment-as- usual. | Not measured. | Significantly greater reduction in fatigue in the music group. 8-cm VAS | Not measured. | | Kwekkeboo m,
2003 (91) | 58 | Outpatients with cancer undergoing noxious medical procedures | RCT | Music: Personal preference of music style played before and during the procedure. | Distraction: Personal preference of a book on tape played before and during the procedure. Control: Resting quietly before and during the procedure. | No significant differences in pain between groups. 0–10 Pain NRS | Not measured. | Not measured. | | Zimmerman et al.,
1989 (89) | 40 | Hospitalized patients with chronic cancer pain | RCT | Music Preferred style of music played for one 30 minute session. | Control: Resting quietly for one 30 minute session. | Significantly greater reduction in pain in music group. McGill Pain Questionnaire Pain VAS | Not measured. | Not measured. |